1,147 research outputs found

    Novae as distance indicators

    Get PDF
    Nova shells are characteristically prolate with equatorial bands and polar caps. Failure to account for the geometry can lead to large errors in expansion parallaxes for individual novae. When simple prescriptions are used for deriving expansion parallaxes from an ensemble of randomly oriented prolate spheroids, the average distance will be too small by factors of 10 to 15 percent. The absolute magnitudes of the novae will be underestimated and the resulting distance scale will be too small by the same factors. If observations of partially resolved nova shells select for large inclinations, the systematic error in the resulting distance scale could easily be 20 to 30 percent. Extinction by dust in the bulge of M31 may broaden and shift the intrinsic distribution of maximum nova magnitudes versus decay rates. We investigated this possibility by projecting Arp's and Rosino's novae onto a composite B - 6200A color map of M31's bulge. Thirty two of the 86 novae projected onto a smooth background with no underlying structure due to the presence of a dust cloud along the line of sight. The distribution of maximum magnitudes versus fade rates for these unreddened novae is indistinguishable from the distribution for the entire set of novae. It is concluded that novae suffer very little extinction from the filamentary and patchy distribution of dust seen in the bulge of M31. Time average B and H alpha nova luminosity functions are potentially powerful new ways to use novae as standard candles. Modern CCD observations and the photographic light curves of M31 novae found during the last 60 years were analyzed to show that these functions are power laws. Consequently, unless the eruption times for novae are known, the data cannot be used to obtain distances

    Hubble Space Telescope: Faint object spectrograph instrument handbook. Version 1.1

    Get PDF
    The Faint Object Spectrograph (FOS) has undergone substantial rework since the 1985 FOS Instrument Handbook was published, and we are now more knowledgeable regarding the spacecraft and instrument operations requirements and constraints. The formal system for observation specification has also evolved considerably, as the GTO programs were defined in detail. This supplement to the FOS Instrument Handbook addresses the important aspects of these changes, to facilitate proper selection and specification of FOS observing programs. Since the Handbook was published, the FOS red detector has been replaced twice, first with the best available spare in 1985 (which proved to have a poor, and steadily degrading red response), and later with a newly developed Digicon, which exhibits a high, stable efficiency and a dark-count rate less than half that of its predecessors. Also, the FOS optical train was realigned in 1987-88 to eliminate considerable beam-vignetting losses, and the collimators were both removed and recoated for greater reflectivity. Following the optics and detector rework, the FOS was carefully recalibrated (although only ambient measurements were possible, so the far-UV characteristics could not be re-evaluated directly). The resulting efficiency curves, including improved estimates of the telescope throughput, are shown. A number of changes in the observing-mode specifications and addition of several optional parameters resulted as the Proposal Instructions were honed during the last year. Target-brightness limitations, which have only recently been formulated carefully, are described. Although these restrictions are very conservative, it is imperative that the detector safety be guarded closely, especially during the initial stages of flight operations. Restrictions on the use of the internal calibration lamps and aperture-illumination sources (TA LEDs), also resulting from detector safety considerations, are outlined. Finally, many changes have been made to the instructions for target acquisition specification

    Hubble Frontier Field Free-Form Mass Mapping of the Massive Multiple-Merging Cluster MACSJ0717.5+3745

    Get PDF
    We examine the latest data on the cluster MACSJ0717.5+3745 from the Hubble Frontier Fields campaign. The critically lensed area is the largest known of any lens and very irregular making it a challenge for parametric modelling. Using our Free-Form method we obtain an accurate solution, identify here many new sets of multiple images, doubling the number of constraints and improving the reconstruction of the dark matter distribution. Our reconstructed mass map shows several distinct central substructures with shallow density profiles, clarifying earlier work and defining well the relation between the dark matter distribution and the luminous and X-ray peaks within the critically lensed region. Using our free-form method, we are able to meaningfully subtract the mass contribution from cluster members to the deflection field to trace the smoothly distributed cluster dark matter distribution. We find 4 distinct concentrations, 3 of which are coincident with the luminous matter. The fourth peak has a significant offset from both the closest luminous and X-ray peaks. These findings, together with dynamical data from the motions of galaxies and gas will be important for uncovering the potentially important implications of this extremely massive and intriguing system.Comment: 16 pages, 10 figures, 2 tables. Matches the verson submitted to mnras. New table (A2) included with additional system candidate

    A Rigorous Free-form Lens Model of Abell 2744 to Meet the Hubble Frontier Fields Challenge

    Get PDF
    Hubble Frontier Fields (HFF) imaging of the most powerful lensing clusters provides access to the most magnified distant galaxies. The challenge is to construct lens models capable of describing these complex massive, merging clusters so that individual lensed systems can be reliably identified and their intrinsic properties accurately derived. We apply the free-form lensing method (WSLAP+) to A2744, providing a model independent map of the cluster mass, magnification, and geometric distance estimates to multiply-lensed sources. We solve simultaneously for a smooth cluster component on a pixel grid, together with local deflections by the cluster member galaxies. Combining model prediction with photometric redshift measurements, we correct and complete several systems recently claimed, and identify 4 new systems - totalling 65 images of 21 systems spanning a redshift range of 1.4<z<9.8. The reconstructed mass shows small enhancements in the directions where significant amounts of hot plasma can be seen in X-ray. We compare photometric redshifts with "geometric redshifts", finding a high level of self-consistency. We find excellent agreement between predicted and observed fluxes - with a best-fit slope of 0.999+-0.013 and an RMS of ~0.25 mag, demonstrating that our magnification correction of the lensed background galaxies is very reliable. Intriguingly, few multiply-lensed galaxies are detected beyond z~7.0, despite the high magnification and the limiting redshift of z~11.5 permitted by the HFF filters. With the additional HFF clusters we can better examine the plausibility of any pronounced high-z deficit, with potentially important implications for the reionization epoch and the nature of dark matter.Comment: Accepted for publication in ApJ with newly identified lensed images in complete HFF dat

    A Search for Planets Transiting the M Dwarf Debris Disk Host, AU Microscopii

    Get PDF
    We present high cadence, high precision multi-band photometry of the young, M1Ve, debris disk star, AU Microscopii. The data were obtained in three continuum filters spanning a wavelength range from 4500\AA to 6600\AA, plus Hα\alpha, over 28 nights in 2005. The lightcurves show intrinsic stellar variability due to starspots with an amplitude in the blue band of 0.051 magnitudes and a period of 4.847 days. In addition, three large flares were detected in the data which all occur near the minimum brightness of the star. We remove the intrinsic stellar variability and combine the lightcurves of all the filters in order to search for transits by possible planetary companions orbiting in the plane of the nearly edge-on debris disk. The combined final lightcurve has a sampling of 0.35 minutes and a standard deviation of 6.8 millimags (mmag). We performed Monte Carlo simulations by adding fake transits to the observed lightcurve and find with 95% significance that there are no Jupiter mass planets orbiting in the plane of the debris disk on circular orbits with periods, P ≤5\le 5 days. In addition, there are no young Neptune-like planets (with radii 2.5×\times smaller than the young Jupiter) on circular orbits with periods, P ≤3\le 3 days.Comment: accepted to MNRA

    HST's hunt for intermediate-mass black holes in star clusters

    Full text link
    Establishing or ruling out, either through solid mass measurements or upper limits, the presence of intermediate-mass black holes (IMBHs) at the centers of star clusters would profoundly impact our understanding of problems ranging from the formation and long-term dynamical evolution of stellar systems, to the nature of the seeds and the growth mechanisms of supermassive black holes. While there are sound theoretical arguments both for and against their presence in today's clusters, observational studies have so far not yielded truly conclusive IMBH detections nor upper limits. We argue that the most promising approach to solving this issue is provided by the combination of measurements of the proper motions of stars at the centers of Galactic globular clusters and dynamical models able to take full advantage of this type of data set. We present a program based on HST observations and recently developed tools for dynamical analysis designed to do just that.Comment: 7 pages; Invited talk at IAU Symposium 266 "Star clusters: basic galactic building blocks" (Rio de Janeiro, 10-14 August 2009), R. de Grijs and R.D. Lepine, eds; v2 reflects a better citation of some references and corrected typo
    • …
    corecore